Arquivo da tag: Partículas

Posts sobre física de partículas, teórica e experimental.

Nobel 2012 – Medindo sem destruir

Eu estava em uma conferência no centro da França sobre física estatística quando recebemos a notícia do prêmio nobel, o auditório explodiu em aplausos, ainda que o premiado não estivesse entre nós. Não aplaudiram o cientista, provavelmente, mas o que ele representa: reconhecimento da comunidade científica a uma área, um raciocínio, uma ideia, muito mais que uma pessoa. Conhecido da maior parte dos conferencistas daquele evento, esse gigante na física experimental certamente merece os aplausos, e mais outros, que virão. Dedico o post de hoje ao prêmio nobel da física de 2012, o mago dos fótons e íons e pesquisador do laboratório Kastler Brossel, Serge Haroche. Também necessário dizer, também ao outro ganhador do prêmio, David Wineland.

Antes, assistir ao seguinte vídeo é necessário:

Dificilmente consigo explicar melhor que isso, mas vou tentar dizer coisas a mais do que isso. Há uma diferença sutil entre os trabalhos de Haroche e Wineland. É uma simetria bonita: o primeiro lança partículas para medir a luz, o segundo usa a luz para medir partículas. A razão desses experimentos, e a grandeza deles, não é apenas conseguir medir a luz sem a destruir, como o vídeo nos conta, mas provar algo mais profundo: que ao medir um estado quântico, a própria régua que usamos para medir é afetada.

Um estado quântico, que é como chamamos a situação em que se encontra a maior parte das coisas muito, muito pequenas, não é o que medimos. Por mais estranho que isso possa parecer, um estado quântico pode ser algo como A+B e, ao medirmos, podemos encontrar A com uma probabilidade e B com outra. É aquela história do gato de Schrodinger, que pode estar vivo e morto ao mesmo tempo; só saberemos ao abrir a caixa, ao fazer a medida. Um átomo pode estar em uma situação dessas, em um estado entre dois níveis de energia, sem necessariamente “escolher” um até que a medida seja feita. Haroche e Wineland foram capazes de, usando fótons e caixas super-refletoras, medir o estado desse átomo sem precisar fazê-lo “escolher” entre um dos dois níveis de energia. Basta lançá-lo em meio a fótons, partículas de luz, que o átomo se mesclaria aos fótons, conduziria as partículas de luz a um estado coerente com o estado do átomo e, para medir o átomo, bastaria medir os fótons. É como medir a velocidade de um barco através das ondas que ele forma na água, sem precisar parar o barco para perguntar o que consta no velocímetro.

Esse tipo de medida preservando o estado quântico de “indecisão” dos átomos é fundamental para uma aplicação em particular: a computação quântica. Eu teria que escrever um post com bastante calma sobre isso, mas o princípio do computador quântico reside nessa ideia de “indecisão” dos estados quânticos entre duas situações, forçar o sistema a escolher um dos estados seria destruir toda a vantagem de se ter um computador quântico. Decerto, a computação quântica ainda engatinha, os experimentos de Haroche e Wineland datam de 1995, desde então as coisas avançaram mais.

O comitê do prêmio Nobel de física, mais uma vez (como no caso de 2010), prestigia uma área científica nova, recente, pesquisadores ainda ativos, com o prêmio máximo da ciência. Merecidamente. Haroche e Wineland, com grande intuição experimental e realização impecável das experiências, ganham lugar ao lado dos maiores na física, gigantes experimentalistas, mestres do mundo do muito pequeno.

Anúncios

Data venia

É o terceiro post seguido em que cito a ciência na mídia, peço desculpas por não comentar um problema interessante de matemática ou um fenômeno bonito em física, mas, dessa vez, um problema sério e um fenômeno nada bonito. Li na Folha a excelente resposta do físico Marcelo Knobel aos comentários do ex-presidente do STF Ayres Britto sobre física quântica e espiritualidade. Eu dificilmente teria me expressado de forma mais clara que Knobel, e faço minhas suas palavras; data maxima venia, o ministro caprichou no nível da bobagem.

Dificilmente encontro um físico brasileiro que não tenha passado por uma situação dessas. Ao dizermo-nos físicos, às vezes somos recebidos com empolgação, quase admiração, de alguém que diz ter estudado física quântica, que aprendeu bastante dessa parte da ciência em seu curso de meditação, que adora como esse ramo do conhecimento confirma as bases espiritualistas de sua crença e, para coroar os comentários, pede-nos uma palavra, uma explicação e, de certa forma, uma aprovação. É uma sinuca de bico, uma situação bem espinhosa com que precisamos lidar.

Isso porque física quântica não é difícil, mas exige muito treinamento e a compreensão de muita coisa antes que se possa tentar entender seus mais básicos fundamentos. Na graduação em física somos apresentados à física quântica não antes do terceiro ano, temos que dominar uma quantidade alta de física e matemática para acompanhar a primeira equação dessa matéria e, ainda que não seja exatamente uma matéria difícil, as implicações na realidade do que as equações nos contam são estranhas, contraintuitivas, quase desrespeitosas ao senso comum. Nós, físicos profissionais, não temos a audácia de repetir nada perto do que disse o ministro, e, garanto, como escreveu Knobel, sabemos de muito mais coisa estranha que acontece no mundo do muito pequeno.

Não digo que física quântica é para poucos, mas é melhor deixada com profissionais; você pode e deve se interessar, como faz lendo esse blog, mas deve sempre ter em mente que, para realmente entender o que está acontecendo, precisa de bastante matemática e física, extraindo, portanto, seu conhecimento de profissionais respeitados da área. Não imagino como o ministro reagiria se grupos de crenças esotéricas começassem a ganhar dinheiro com termos como “o habeas corpus da alma e suas aplicações”, vendo a noção do termo jurídico ser mutilada em uma cacofonia de frases de autoajuda.

Mas não termino esse post sem comentar algo sobre física, e talvez minha parte favorita da introdução da física quântica, desmentindo o que disse no começo que não contaria nenhum fenômeno interessante. Knobel cita “Como físico, acredito em coisas incríveis, como entes que são ondas e partículas simultaneamente”, e ele escolheu esse primeiro tópico a dedo, é conhecido como “a dualidade onda-partícula” na física quântica. Foi talvez o primeiro grande empasse experimental dessa área, e a fonte de debates acalorados nos anos 20, até a invenção de um gato que estaria vivo e morto ao mesmo tempo. Essa história começa com duas paredes, uma delas com duas fendas, um físico e uma metralhadora. No caso da figura (de Arthur Vergani) que segue, Erwin Schrodinger.

schrodinger_gato_dupla_fenda

Imagine-se segurando uma metralhadora. À sua frente, uma parede com duas fendas verticais não muito grandes. Essa parede é bem resistente e a metralhadora não irá machucá-la, mas a parede que está logo depois dela, que não possui fendas, é mais frágil e ficará machucada. Você começa a atirar nas fendas, sem qualquer critério e com pouca mira. Como ficará a parede frágil que fica atrás?

A primeira parede servirá de “escudo”, deixando apenas passar balas pelas fendas. O esperado, então, é encontrar a região da parede frágil imediatamente em frente às fendas mais destruída. Ou seja, depois da saraivada de balas, sua parede deve estar com as seguintes marcas:

fenda_dupla_1

Marquei com linhas pontilhadas onde ficam as fendas da outra parede, que deixaram as balas passarem. Claro, há balas que não caem imediatamente em frente às fendas, há ricochetes, estou atirando como um maníaco nas paredes.

Isso acontece com balas, e o grande problema da física quântica é a descoberta de que elétrons não são balas. Ainda na analogia, imagine-se com uma nova metralhadora, que lança elétrons. Você metralha as paredes, e vamos imaginar, pela analogia, que as marcas deixadas nas paredes são as mesmas. Se você tivesse metralhado suas paredes com elétrons, sua parede de fundo teria uma imagem parecida com essa:

fenda_dupla_2

Vou deixar alguns instantes para você tentar digerir essa imagem.

Essa descoberta, conhecida como a experiência da dupla-fenda, chocou a comunidade científica. Não porque esse padrão era novo, pelo contrário, porque esse padrão é conhecido e pertencente a outra categoria de objeto, as ondas. Se você lançar luz por fendas pequenas o suficiente, você terá exatamente esse padrão de difração, como chamamos. Se você quer uma foto, apresento a que eu tirei quando, na faculdade, lancei um feixe laser em duas fendas bem pequenas. A figura formada do outro lado foi:

fenda_dupla_3

Esse padrão concorda exatamente com a parede metralhada por elétrons que passaram pela fenda dupla. Nessa experiência, conseguimos ver o caráter ondulatório do elétron. As ondas formam esse padrão se atravessam duas fendas, como as ondas de água formariam se a parede fosse capaz de medir a altura da água e colocássemos a parede com fendas duplas na beira do mar. Essa figura psicodélica da Wikipédia talvez ajude a ver, ou talvez desperte algum distúrbio neurológico que você ignorava possuir. As cores são a altura da água, quanto mais vermelha, mais alta:

Desde a primeira experiência com elétrons, os físicos tentaram responder a pergunta: afinal, por qual fenda o elétron passou? A onda do mar não passa por nenhuma fenda exatamente, passa pelas duas ao mesmo tempo, afinal, a onda não está em lugar nenhum, mas em vários. Ondas não possuem a nossa noção convencional de posição, e isso não assusta ninguém; mas o elétron é e sempre foi uma partícula, ele deveria passar por alguma fenda.

A primeira ideia é colocar um medidor de elétrons nas fendas. Fazendo isso, conseguimos medir a presença de um elétron e nem é preciso absorvê-lo, basta jogar algo nele que, se rebater, ele está lá. E de fato nunca teremos duas medições do mesmo elétron, ele irá realmente passar por uma das duas fendas; mas, ao olharmos para a parede no final da experiência, a figura que veremos será a da primeira parede cheia de balas, não a segunda. Como uma pegadinha cruel, se medimos por qual fenda o elétron passa, teremos o resultado esperado por partículas. Se não medimos, ele se comporta como onda! A única analogia válida, porque todas são difíceis nessa área, é aquele brinquedo de sua infância que não funcionava de jeito nenhum, aquele computador em pane que, quando seu pai chegava para consertar, funcionava cinicamente na primeira tentativa.

Com o tempo, descobrimos a intrincada complexidade dessa experiência. A perda do padrão de onda do elétron ocorre porque medimos ele e, nessa medida, damos muita energia ao garoto, que começa a se comportar de maneira diferente depois da medição. Nossa observação estraga o efeito que queremos, como abrir o forno para checar se o bolo está bom pode estragar o bolo.

Na mesma época, foram feitas outras experiências com a luz e descobriu-se que ela, muitas vezes, se comporta como partícula, quando desde muito se sabia que ela é uma onda. Aos poucos, os físicos foram chegando à conclusão de que, no mundo do muito pequeno, as coisas não são nem ondas, nem partículas. Não é muito correto dizer que são onda e partícula simultaneamente, tentando criar a ideia de um falso paradoxo e, acidentalmente, de misticismo na ciência. Mais honesto seria, talvez, dizer que os objetos muito pequenos não são ondas ou partículas, mas schrugs, um nome que acabo de inventar, mas que serve para deixar claro o fato de que eles são algo diferente do que estamos acostumados. Em algumas experiências, se comportam como ondas, em outras, como se fossem partículas, e essa é a realidade do mundo do infinitamente pequeno.

E por que haveríamos de achar uma analogia perfeita das partículas com objetos de nosso cotidiano? Que obrigação tem a realidade do nanométrico de se conformar a nossas concepções tão atreladas ao metro e ao segundo? A mecânica quântica diverge muito de nosso senso comum porque o muito pequeno, como o muito grande, não cabe em nossa imaginação; ainda bem que possuímos muitas equações confortáveis para nos guiar nesses pântanos e pradarias tão pouco familiares.

Por fim, noto que não consigo conceber onde nessa história toda há a verificação da espiritualidade de Ayres Britto. Na onda dos místicos de plantão, os que provavelmente inspiraram o ministro em sua crença, eles podem julgar que todos nós temos uma dualidade na existência, que a alma é um estado quântico, ou convolver um termo esotérico qualquer com um quântico para soarem sábios e parecerem ridículos; é fácil se aproveitar do desconhecido, do analfabetismo científico, para, em uma pajelança de termos vagos, vomitar pilantragem em DVD’s e palestras.

A física quântica nada tem de vago, nada tem de esotérico, nada tem de místico, não é bagunça, é coisa séria. É diferente do convencional, é verdade, assim como o estudo do muito grande, a cosmologia e a astrofísica, o são. Mas de nada serve, a eles, uma área da ciência sem frases de efeito, sem termos de significado obscuro que podem tornar um pilantra em um sábio em potencial (como disse em outro post, tarô quântico certamente parece mais interessante que tarô). Essas pseudociências compõem livros que forçam termos científicos a ficarem constrangedoramente justapostos a quem eles jamais conscientemente ficariam, como uma festa de fim de ano em que ninguém se conhece, sendo mais próximos de um sequestro de reféns que de um texto. Qualquer pessoa que usar termos estripados dessa área da física para justificar seu misticismo é, na melhor das hipóteses, ingênua; na pior, uma fraude.

Esperamos, portanto, que essa área da ciência se livre algum dia desse estigma, desse encosto esotérico. E também esperamos, como brasileiros, que o julgamento do ministro nada tenha de quântico, nada tenha de dualidade e nada tenha de relativo.

Dia de festa

Hoje é um dia de festa para a física.

Há algumas horas, o CERN, Centro Europeu de Pesquisa Nuclear, anunciou a tão esperada descoberta: encontramos o bóson de Higgs. Depois de muito tempo, dinheiro e estudo, os físicos de partículas conseguiram, e hoje o dia é deles. Tenho lido bastante coisa na imprensa sobre essa descoberta, e infelizmente muita bobagem, em especial com o apelido “partícula de Deus”. Um colega resumiu bem o que o Higgs tem a ver com Deus nessa página. De minha parte, acredito que vale a pena escrever um pequeno resumo sobre uma das aplicações do Higgs e sua importância para a física.

Para entender o Higgs, precisamos entender as forças da natureza. Todo tipo de interação acontece em uma de quatro formas possíveis: por força gravitacional, por força eletromagnética, por força forte ou por força fraca. As duas primeiras são bem conhecidas, é por elas que você é atraído pela Terra (gravitacional) mas não atravessa a Terra com seus pés (eletromagnética). As outras são menos famosas, mas igualmente importantes: a força forte é a atração que prótons e nêutrons sentem entre si, e o que torna o núcleo atômico possível; afinal, você nunca se perguntou como tanta carga positiva conseguia ficar junta? A fraca é mais sutil, ela age na desintegração de partículas e em uma boa parte do que conhecemos como radioatividade.

Essas quatro forças fundamentais possuem características muito diferentes. A forte é de alcance extremamente curto, mas muito intensa onde age, e sua forma exata ainda é desconhecida. A fraca age apenas em partículas “girando” em um determinado sentido, não em outro, como se preferisse a esquerda à direita, um comportamento muito estranho. A eletromagnética é talvez a mais bem comportada, conhecemos todas as suas leis e seu alcance, desde o século XIX ela não é mistério. A gravidade, no entanto, é a irmã bastarda das forças, resistindo a toda tentativa de unificação, sozinha, quase uma criança autista isolada em seu mundo e hostil a qualquer tentativa de se aproximar das outras. Pedi a um amigo que representasse as quatro forças em um desenho, que é um de meus favoritos:

No século XX, contudo, os físicos descobriram um passado comum entre a força fraca e a eletromagnética. Apesar de possuírem comportamentos completamente diferentes, descobrimos que, se estudamos partículas ou forças a altíssimas energias, essas duas forças são, na verdade, a mesma coisa nessa escala! Como irmãos gêmeos que depois de uma certa idade são completamente diferentes, essas forças já foram a mesma coisa, logo depois do Big Bang, quando a energia ainda era alta demais; mas hoje possuem apenas traços leves de parentesco.

Aí entra o Higgs. Essa partícula, que na verdade é mais um campo, é responsável pela quebra na simetria entre a força fraca e a eletromagnética. Em energias muito altas, elas são a mesma coisa, mas, conforme a energia vai baixando, o Higgs começa a agir e a tornar essas forças completamente diferentes.

Toda força é transmitida por uma partícula. As partículas da força fraca são os bósons W e Z, a partícula da eletromagnética é o fóton, e eles são radicalmente diferentes; para começar, W e Z têm massa, o fóton não. Isso é culpa do Higgs, por isso dizemos que ele é responsável por dar massa aos bósons, e até a mais outras coisas, porque podemos repetir esse raciocínio para explicar a existência de massa em todas as outras partículas! A presença do Higgs é a causa da separação entre a força eletromagnética e a fraca; sem ela, o universo seria um lugar bem diferente. Ele possui outras tarefas, mas talvez a mais importante seja essa, separar esses irmãos gêmeos e tornar um o bom aluno, enquanto o outro torna-se o rebelde.

A importância dessa descoberta é múltipla. Em primeiro lugar, temos nossa teoria confirmada, o que é fundamental para a ciência. Se isso fosse geografia, poderíamos dizer que há uma cidade ali, uma aqui, porque as observamos; e então dizermos: “Pelos meus estudos, deve haver uma cidade nas coordenadas 21º43’19”S, 44º59’06”W”, viajar e descobrir lá uma cidade, nunca antes observada, encontrando cidades e povos apenas porque sua geografia estava correta, porque a teoria está certa.

Em seguida, podemos aprofundar o estudo dessa partícula para desvendar outros mistérios, como o que é massa? Como a gravidade (que atrai massas) funciona? Por que a mesma massa que usamos para calcular a resistência a ser acelerado (aquela do F = m.a) é a mesma que serve para dizer o quanto um corpo atrai o outro? Como escrever a gravidade nessa linguagem de partículas? Pode o Higgs nos ajudar a entender toda aquela parte de matéria escura e energia escura que nos desafia e fascina, sem nos dar pista nenhuma?

Para mais detalhes, há um vídeo excepcional produzido pelo PhD Comics, de onde tirei a imagem inicial do post, que explica as dificuldades em medir o Higgs e que surpresas ainda nos aguardam.

Assim, parabenizo os físicos de partículas, em especial os experimentais, hoje o dia é de vocês. Uma vitória para os físicos, e para toda a ciência, que avançou mais um pouquinho na compreensão do universo, na busca pela verdade; uma pequena partícula para o CERN, um grande passo para a humanidade. E dou boas-vindas ao Higgs a nossa lista de partículas elementares, o tão esperado bóson que, depois de tanto fugir e se esquivar, cansou e voltou para casa.

Pauli, o tirano

As primeiras aulas de física quântica não são interessantes, são revoltantes. Se você não sente vontade de jogar o livro na parede, isso indica que não está entendendo a matéria. A razão é também o motivo de tanto usarem essa área da física para venderem esoterismo pseudocientífico, acrescentando a palavra quântica a qualquer termo para soar mais elaborado (tarô quântico parece bem mais interessante que tarô); a física quântica não possui, para vários conceitos, analogias no nosso mundo.

Enquanto conseguimos analogias para o campo elétrico no eletromagnetismo, tentamos explicar que é como o correr de um rio, tomando metáforas e alegorias dos fluidos para explicar as cargas, a física quântica não lida bem com analogias. E não é de se estranhar, ela é, em última análise, muito mais fundamental que a nossa física clássica, a física do dia-a-dia. Como ela descreve o muito, muito pequeno, não é obrigada a ter nada em comum com a realidade que conhecemos. Vou dar um exemplo.

Aprendemos a existência de uma propriedade das partículas chamada spin. O nome engana, os que descobriram essa propriedade achavam que ela representava o quanto a partícula estava girando, e isso não é verdade. É uma boa analogia, mas, se levada a sério, a energia do spin, se entendida como de rotação, obrigaria a partícula a girar mais rápido que a luz, um problema grave de tentar importar conceitos clássicos como “girar” a partículas. Por fim, um bom livro de quântica apenas dirá que as partícula possuem essa propriedade chamada spin, como possui outras que nos são familiares, como massa e carga. Mas não conseguimos perceber claramente a presença do spin em nosso mundo, foi uma propriedade descoberta apenas ao olhar para o muito pequeno. Assim, a pergunta: “o que exatamente é o spin?” não faz sentido. Ele é, ponto final, como a carga e a massa também são. Não se deve tentar explicar o muito pequeno pelo muito grande, é como tentar achar um análogo do tijolo entre os arranha-céus, o que você deve fazer é explicar o muito grande através do muito pequeno. A verdadeira pergunta é: “por que não vemos o spin no nosso dia-a-dia?”, e parte da resposta é dizer que, o spin podendo valer +1 ou -1, com muitas partículas juntas o +1 de umas compensa o -1 de outras e um corpo feito de muitos átomos acaba sendo “neutro” em spin. Outra parte da resposta está aqui, mas é um pouco mais complicada e não recomendo. E o que seria um corpo “carregado em spin”, com muito mais gente valendo +1 que -1? Chamamos esses corpos de imãs, e você provavelmente deve ter um em sua geladeira.

E o spin não é o único. Há um princípio fundamental e místico na quântica, cuja explicação honesta é bem complicada: o princípio de Pauli. De forma extremamente simplificada, esse princípio dos dirá que as partículas se dividem em dois grupos: os férmions (a maior parte dos que você conhece: o elétron, o quark, o neutrino) e os bósons (o fóton e outros menos conhecidos, como o glúon, eu sei, parecem todos nomes de pokemon). Enquanto os bósons vivem uma vida tranquila, os férmions devem obedecer ao princípio de Pauli, que diz que férmions iguais não podem jamais estar juntos no mesmo lugar. As noções de “juntos” e “mesmo lugar” são mais complicadas do que parecem, mas o princípio geral é esse: se dois férmions estão juntos, algo neles é diferente.

Esse princípio possui diversas implicações. Lembra-se daquela história de orbitais atômicos em suas aulas de química, ou do diagrama de Linus Pauling, ou das letras s, p, d, f? Esses conceitos todos são uma maneira diferente de escrever o princípio de Pauli. Os elétrons estão em torno do núcleo atômico, eles são férmions. Naturalmente, eles vão estar no menor estado de energia possível; se eles estiverem com uma energia alta, vão provavelmente enviar essa energia em forma de fóton e descer para um estado mais baixo de energia. Se fica difícil imaginar, tente visualizar essa energia como a “velocidade” dos elétrons. Se rápidos demais, eles podem enviar essa energia sobrando em forma de fóton e ficar mais devagar, sendo difícil acelerar de novo. Se um elétron tem mais energia que outro, dizemos que ele está em outra camada eletrônica. Aqueles desenhos de anéis concêntricos das camadas do átomo não são verdadeiros, a camada tem muito mais a ver com a velocidade do elétron que com a posição, e o lugar do átomo onde os elétrons ficam está bem diferente de círculos concêntricos, em alguns casos é mais perto de uma chupeta que de uma esfera.

No caso do estado de menor energia, teremos um problema. Um elétron consegue entrar lá, mas o próximo não, porque ele precisa ser diferente em algo, pelo princípio de Pauli. Então o primeiro entra com spin valendo +1, um segundo pode entrar valendo -1, e a entrada para elétrons é fechada depois disso. O estado de menor energia, o tal do orbital s, não pode abrigar mais que 2 elétrons, porque o princípio de Pauli impede. Se mais elétrons querem entrar no átomo, eles devem ter uma energia superior ao do estado 1s, devem ocupar um espaço em uma camada mais energética, que é onde está livre. Esse princípio, que antes parecia uma proibição arcana, rege a estrutura eletrônica dos átomos. Temos uma representação simples dessa lei nesse desenho tirado de xkcd.com:

E não somente lá. No interior de uma estrela grande, os elétrons são forçados a ficarem muito juntos e, pelo princípio de Pauli, devem diferir em alguma coisa. Sem opção, eles devem diferir em energia, isso força os elétrons do interior da estrela a terem muito mais energia do que eles “precisariam” se não fosse o princípio de Pauli; essa diferença de energia é responsável pela estabilidade da estrela durante milhares de anos; se não fosse o princípio de Pauli, os elétrons poderiam se encostar em um nível de energia baixa e o interior da estrela não conseguiria resistir à pressão gravitacional (é um pouco importante ler o post sobre esse tema para entender o que digo). Um fenômeno quântico, do mundo do muito pequeno, assegura que a estrela não colapse; Pauli exige que os elétrons sejam diferentes, e eles se tornam diferentes em alguma coisa, sem opção, devem aumentar sua velocidade para diferirem em energia.

O princípio de Pauli se aplica a todos os férmions. Curiosamente (putz, é um teorema bem difícil de provar, conhecido teorema da estatística do spin), todos os férmions possuem spin semi inteiro (1/2, 3/2, 5/2) e os bósons possuem spin inteiro (0, 1, 2), o que conecta esses dois conceitos de modo nada trivial e torna a teoria quântica de campos mais divertida.

Apesar de parecer místico, uma proibição de juntar partículas iguais, o princípio de Pauli nada tem de misterioso e possui formulação matemática precisa e elaborada. A quântica sofre daquele mal, ao enunciar uma lei, tê-la rapidamente roubada por charlatães esotéricos que a convertem em frases genéricas e sem sentido como “estamos todos conectados no mundo quântico” ou “cada partícula é única, cada indivíduo é único”. Ao encontrar um desses, não combata, fuja. Não tente explicar, corra. Eles não parecem querer a verdade, gostam mais de adequar a ciência a suas preconcepções; e dizer a verdade a quem não a ama é apenas dar mais munição para ser mal interpretado. Não estou em uma cruzada contra misticismo ou esoterismo, isso é assunto para outro post, talvez ainda outro blog; deixo apenas um aviso, como físico, que esse uso da quântica como fonte de frases-feitas pseudocientíficas me revolta. A quântica é a teoria mais testada da física, e a que passou nos testes com maior precisão, a mais “certa” das áreas, e talvez a mais estranha por suas leis e ditos sem análogo clássico. Como elétrons que giram sem girar, como gatos que estão mortos e vivos, como Pauli, ditando que partículas iguais, por mais que se amem, não podem ficar juntas.

Um diagrama nada claro

Na faculdade, aprendemos a física por sua trajetória histórica: começamos pelas leis de Newton, sua mecânica, passamos ao estudo de ondas, óptica, termodinâmica, atravessamos o eletromagnetismo e terminamos a “física básica” com quântica. Mais para o final do curso, continuamos com a física do século XX, da qual a quântica faz parte, além de incluir a física estatística e a relatividade geral nessa história. Matérias mais avançadas, como a teoria quântica de campos (TQC) e a teoria estatística de campos (TEC) são assunto de mestrado e doutorado, muita gente parece viver bem feliz sem jamais tocar em um livro de qualquer dessas matérias.

Mas a relação entre as áreas da física não é essa histórica, uma não leva naturalmente a outra. É possível ser muito feliz em uma área da física sem jamais precisar se aprofundar muito em outra (ainda que grandes descobertas costumem ser feitas apenas por físicos com um vasto conhecimento de quase todas as áreas), não preciso saber astronomia para trabalhar com física do estado sólido (ou física dos materiais).

Então decidi tomar alguns minutos, sentar e pensar em um diagrama mais compreensivo da física, que leve em conta as interconexões entre as áreas e que seja uma divisão justa e organizada dessa ciência. É evidente que cheguei a algo bem confuso, mas o resultado não ficou feio, e coloco-o aqui.

Muitos físicos vão discordar com ferocidade da divisão e organização, mas foi o melhor que pude, não conheço tanto de todas as áreas para entrar em uma reflexão mais profunda que o que escrevo nesse post.

Comecei colocando a matemática como centro. A física é inteira apoiada na matemática, e nela estão muitos dos vínculos das áreas da física. Em seguida, tracei as três principais áreas da física: relatividade (geral ou restrita), física estatística e física quântica.

Física quântica: é o estudo do muito pequeno, muito mesmo. Estamos falando de elétrons, prótons, átomos, nada que possamos ver ou tocar diretamente, precisamos estar pelo menos a 0,00001 mm (10^{-8}m) para começar a sentir algum efeito dos estudos dessa área. Ainda, é o que precisamos estudar para entender do que as coisas são feitas, como fazer coisas novas, materiais novos, entender as leis que regem a escala atômica e usá-las.

Relatividade: estudamos os efeitos de velocidades muito altas (próximas às da luz, que é a máxima possível), massas muito grandes (como a da Terra ou a do Sol) e energias muito elevadas (como a explosão de uma estrela).

Física estatística: é a área que tenta deduzir, a partir do mundo do muito pequeno, o que acontecerá no nosso mundo. Tentamos entender como a gota de água tende a ficar junta se ela é feita de várias moléculas, ou como não conseguimos atravessar a parede se o espaço entre os átomos é muito maior que os átomos.

Assim, posso explorar as intersecções entre essas áreas. Se estamos na fronteira entre relatividade e quântica, estamos falando da teoria quântica de campos (TQC), uma área bem complicada que tenta escrever a mecânica quântica em uma linguagem que leve a relatividade em conta. Não me atrevo a tentar misturar relatividade geral com quântica, ninguém consegue fazer isso decentemente. Entre a física estatística e a quântica, teremos a teoria estatística de campos (TEC), que usa diversas propriedades do mundo do muito pequeno para explicar muito fenômenos do nosso cotidiano, em uma linguagem matemática bem trabalhada e bem parecida com a da TQC. Eu poderia colocar tudo em uma área só, campos, mas assim fica mais fácil de ver.

Entre a relatividade e a física estatística, temos a astrofísica, o estudo das propriedades físicas das estrelas, galáxias, que exige tanto conhecimento de relatividade, por reger as leis fundamentais desses corpos, como conhecimentos da física estatística, porque uma estrela é formada de muitos átomos e uma galáxia de muitas estrelas. A relatividade, sozinha, inclui a nossa querida mecânica do colegial, que é apenas um caso particular da relatividade para baixar velocidades e massas suficientemente pequenas. A física estatística, quando aplicada a gases e líquidos, torna-se a termodinâmica.

Se continuamos, podemos pensar que o estudo das propriedades físicas dos corpos celestes aliado às leis de Newton nos permite saber a posição, trajetória e diversas outras grandezas estudadas pela astronomia. A astrofísica, quando estudada em grande escala e recebendo o apoio das leis da termodinâmica e da física estatística, torna-se a cosmologia: o estudo do universo como um todo, sua expansão, evolução e destino. Aplicar a teoria estatística de campos à termodinâmica nos torna capazes de descrever estruturas mais complexas que gases, podemos até pensar em cristais, coloides, plásticos, estamos na física do estado sólido. A teoria quântica de campos e a teoria estatística de campos se encontram para descrever propriedades complicadas do mundo subatômico, permitindo-nos estudar a física de partículas. Por fim, a teoria quântica de campos, capaz de descrever os elétrons e os prótons (que possuem carga) e a mecânica de Newton se encontram no eletromagnetismo.

Por fim, podemos colocar algumas outras áreas. O eletromagnetismo é muitas vezes estudado profundamente no aspecto de transmissão de energia eletromagnética em forma de onda, uma área conhecida como óptica, que engloba toda a propagação de ondas eletromagnéticas no vácuo ou não. A física do estado sólido e a de partículas se encontram para tentar gerar materiais novos, diferentes, estruturas moleculares complicadas, e podemos atribuir esse estudo à química molecular, que não é tanto física assim, mas merecia um lugar no diagrama. As partículas e o eletromagnetismo juntam forças para desbravar os mistérios do centro do átomo, em uma área muito ativa no último século chamada física nuclear. E das partículas, sozinha e um pouco isolada, quase uma sub-área da matemática, parte a teoria das cordas.

Qual a lógica do diagrama? Se você quiser estudar alguma área, terá que saber bastante de todas as áreas internas à que escolheu, estudando todas as que sua área toca no anel interior. Claro, isso não torna as áreas exteriores mais difíceis, você muitas vezes não precisa se especializar nas áreas interiores para saber a sua, é apenas um diagrama que indica vínculo, procedência e contato entre as áreas. Queria que o diagrama terminasse com um anel completo, mas não consegui pensar em nada que viesse de estado sólido e cosmologia, ou nada melhor para colocar entre astronomia e cosmologia que “coisas do espaço”.

Oscilações de caráter

A predição e descoberta dos neutrinos na segunda metade do século XX foi uma das grandes conquistas da física de partículas e da astrofísica. Pequenos, rápidos e quase indetectáveis, esses pequenos diabos roubam a energia das explosões de supernovas e bombardeiam outras galáxias, atravessando o espaço em uma velocidade próxima à da luz. A Terra é bombardeada o tempo todo por uma quantidade colossal de neutrinos, felizmente eles interagem muito pouco com a matéria e, até tentando, é difícil detectar um. Os caçadores de neutrinos, em especial o Super Kamiokande – um detector de neutrinos com nome de herói japonês que, não por menos, é parte da Universidade de Tóquio – possuem um trabalho duro. Em 1987, ano da explosão de uma supernova próxima à Terra, nosso planeta foi atingido pela maior onda de neutrinos da era da ciência moderna, detectamos 24.

Interior do detector Super Kamiokande.

E medidas mais precisas do número de neutrinos quase levaram a comunidade física à loucura no final do século XX. A física teórica, aliada a alguns experimentos na Terra, nos dizia exatamente a probabilidade de medir neutrinos, a astrofísica nos dizia a quantidade de neutrinos produzida pelo Sol, era só multiplicar um pelo outro para estimar a quantidade de neutrinos que seríamos capazes de medir na Terra a cada ano. O problema: medíamos muito menos do que deveríamos.

Diversas hipóteses foram levantadas: neutrinos perdidos na atmosfera, detectores que funcionavam mal, nada era o suficiente para explicar a diferença. Claro, a diferença era entre medir 12 e 24, mas, por menor que fossem esses números, um ainda era o dobro do outro; e a física é bem intolerante com teorias que “quase funcionam”.

Pior, essa diferença variava com o ano. Havia uma grande diferença entre o número de neutrinos medidos em julho e em janeiro, mas entre dois janeiros consecutivos a taxa de captação de neutrinos era quase equivalente. Ainda, nos dois casos, o número era praticamente metade do esperado, e isso aumentava o mistério. Coloco um gráfico para entender a diferença entre o recebido e o esperado. As barras em azul escuro são as medidas, as mais coloridas são as esperadas (as cores nas barras teóricas representam o processo pelo qual os neutrinos são emitidos). A parte hachurada representa o erro experimental.

Antes de solucionar o mistério, precisamos entender um pouco sobre o neutrino e sobre as partículas. A maior parte das partículas elementares (os férmions, para ser exato) vêm em três tipos, ou três sabores: leve, médio e pesado. O elétron, por exemplo, é o membro leve da sua família, seus irmãos maiores são o múon (médio) e o tau (pesado). Não ouvimos falar muito dos membros mais pesados da família porque a formação deles é mais rara no universo, sendo mais pesados, eles são mais difíceis de serem “fabricados”. Neutrinos vêm em três tipos, nós definimos esses tipos através do método de formação deles, porque neutrinos sempre se formam em uma reação que envolve alguém da família do elétron. Os neutrinos que saem de uma reação com o elétron são chamados, por falta de criatividade, de “neutrino do elétron”, sendo os outros “neutrino do múon” e “neutrino do tau”. Retirei do site particlezoo uma representação dessas partículas elementares em pelúcia:

No começo dos anos 2000, os físicos decidiram tentar algo diferente. Eles tentariam captar todos os tipos de neutrino, não apenas o do elétron, como vinham fazendo até então. A experiência parecia fadada ao fracasso, porque o Sol só produz neutrinos do elétron, os demais que apareceriam seriam raros demais, vindos de processos exóticos em estrelas longínquas. Para o espanto da comunidade científica, a quantidade de neutrinos do múon que atinge a Terra é quase igual a dos neutrinos do elétron. Usando a soma de todos os tipos de neutrino, aquelas barras “esperado” e “medido” coincidiam!

Mas como explicar isso? A única forma de explicar foi compreender o fenômeno de oscilação de neutrinos. Lembro que as partículas elementares não são como aquelas pelúcias fofinhas, elas não precisam obedecer às regras da física “convencional” e não o fazem. Um neutrino, quando é produzido em uma reação com um elétron, é um neutrino do elétron, mas só naquele momento. Durante seu “voo” até a Terra, ele não é nem neutrino do elétron, nem do múon, nem do tau, ele é um neutrino. Quando nós o capturamos, ele tem uma certa probabilidade de reagir com um elétron e uma certa probabilidade de reagir com um múon, e nisso damos o nome para ele. Mas note que ele não é nenhuma dessas categorias, mas um estágio intermediário entre elas que, quando medimos, “escolhe” qual estado será.

Isso é bem confuso e analogias são difíceis. Qualquer analogia que explica bem a mecânica quântica está errada, mas vou tentar assim mesmo. O neutrino, nesse sentido, é como um cilindro, mas somos apenas capazes de medir objetos de um jeito estranho: imagine que conseguimos pintar o cilindro com tinta e, em um dado momento, colocá-lo em um papel e medirmos a figura que ele “pinta” com a tinta. Em seguida, tentaríamos entender o que é esse objeto através de nossos conhecimentos de figuras planas. Imagine que o cilindro está girando, rodando no ar de forma aleatória. Quando batemos o cilindro no chão e estudando sua mancha, ela tanto poderá ser retangular (a marca do “lado” do cilindro) quanto poderá ser circular (a marca da base do cilindro), tudo depende da posição em que ele estiver rodando. Os neutrinos agem de forma parecida, eles são uma mistura dos três estados (elétron, múon e tau) e, quando os medimos, eles se manifestam de uma forma na experiência. Porque nossa compreensão do neutrino é apenas o que medimos quando ele é produzido ou aniquilado, damos a ele esses nomes; assim como se só fôssemos capazes de medir a mancha diríamos que o cilindro é um objeto que está no estado círculo e no estado retângulo ao mesmo tempo, “escolhendo” um desses estados quando vamos medir sua marca de tinta.

Com isso, o mistério da variação no ano está resolvido. A probabilidade de encontrar um neutrino no estado elétron ou múon varia de acordo com seu tempo de voo, há pontos de sua trajetória em que ser do elétron é mais provável que ser do múon. Mas a Terra gira em torno do Sol e a distância entre nós e o astro rei varia com o ano (estamos mais próximos do Sol em janeiro e mais afastados em julho), não o suficiente para afetar muito o clima, mas essa diferença na distância dá mais tempo de voo aos neutrinos e afeta suas probabilidades, tornando a repartição elétron-múon diferente em cada momento do ano mas, entre um janeiro e outro, o  comportamento deve ser o mesmo.

Vale notar que os experimentos para medir neutrinos, essa “partícula-fantasma”, acontecem desde os anos 60, e dou destaque especial às experiências de Raymond Davis, prêmio Nobel de 2002 por seus experimentos. Davis transformou uma antiga mina de ouro em South Dakota em um grande detector de neutrinos. A medição era feita usando colisões de neutrinos com átomos de cloro, a mina era necessária para isolar o experimento de raios cósmicos que podiam parecer neutrinos, e todo ele era cercado por água, o que garantiria que só neutrinos atingiriam o cloro. A mina podia ficar bem quente em algumas épocas do ano, por isso coloco aqui uma foto de Davis nadando na água de seu experimento.

Raymond Davis Jr. Nobel da física de 2002.

E isso soluciona o mistério dos neutrinos desaparecidos e abre um capítulo interessante para entender a natureza das partículas elementares e esse tal fenômeno de oscilação. Nem tudo é o que parece, em especial os neutrinos, que são, na verdade, uma mistura de tudo o que deles podemos medir.

Continuar lendo