Arquivo da categoria: Geek

Posts para iniciados em ciência que ainda não completaram seu treinamento Jedi. Estudantes em faculdades de exatas são o que tenho em mente nessas publicações.

Amigo secreto

Inspirado nesse clima de fim de ano, pensei em problemas que combinariam com essa última semana, e nenhum me pareceu mais adequado que o do amigo secreto. Todos já participamos de algo parecido, você é obrigado a tirar aleatoriamente um amigo que, via de regra, você mal conhece e deve comprar a ele um presente de até um determinado valor. É uma excelente oportunidade de ter que comprar coisas para quem não conhece e receber algo pífio de quem não gosta, porque presentes dependem do presenteado e, com pouca informação a respeito, esse processo tende a receber uma camiseta tamanho M que nunca na vida você usará.

Mas estes não são os únicos problemas do amigo secreto, há outros, que ao menos têm solução. Vou propor duas perguntas sobre a brincadeira, que envolvem pequenos defeitos que podem acontecer na seleção. Encontrar suas soluções é um interessante exercício de combnatória.

1) Qual a probabilidade de alguém tirar a si mesmo?

A primeira pergunta parece simples, mas tanto está longe de ser que ganhou um nome: o problema do chapeleiro. Suponha que o responsável por uma chapeleira perdeu o livro que dizia o dono de cada chapéu. Sem saída, ele distribui aleatoriamente os chapéus a quem vem buscar o seu. Qual a probabilidade de ele não ter acertado nenhum?

A resposta, apesar de bonita, não tem demonstração simples. Se peco na precisão, é por amor à clareza, vou tentar explicar o princípio desse cálculo. Você sabe que todas as permutações possíveis dos chapéus são N!, onde N é o número de chapéus. Para saber a probabilidade de isso não acontecer, calculamos a chance de acontecer e tomamos a complementar. Para tal, basta somar as permutações que mantêm alguém constante (alguém recebeu o chapéu errado). Mas teremos um problema com isso, como veremos.

  • Missão: calcular a chance de alguém ter recebido o próprio chapéu.

Sabemos que para calcular a chance de uma pessoa i receber seu próprio chapéu basta somar quantas permutações de chapéu resultariam em ele terminando com seu chapéu na mão, e essa conta é simples, são (N-1)! (com o dele fixo, calculamos as permutações dos demais). Mas não podemos apenas somar esse número para todos os i, pois estaremos contando muitas coisas duas vezes! Para entender, uso de exemplo os quatro irmão, G, B, R e Y, que decidiram ir a uma festa deixando seus chapéus na chapelaria. Eles chegaram da seguinte forma:

hats2

4!=24 configurações possíveis de distribuição de chapéus na saída, mas há apenas 6 configurações em que o verde recebe seu chapéu corretamente, vejamos:

hats1

Note que seria ingênuo apenas somar essas configurações para todos os irmãos e dizer que esse seria o número de permutações em que alguém recebe seu chapéu corretamente, pois notamos que poucas são as vezes em que apenas o verde recebe seu chapéu, ou seja, na conta do verde há vezes em que outros recebem seu chapéu e essas configurações serão contadas novamente na vez desses outros que receberam o chapéu correto. Felizmente isso pode ser corrigido, basta retirar o número de vezes em que dois recebem os chapéu correto.

Vamos colocar isso em uma linguagem matemática decente. Chamaremos A_n o conjunto das permutações tais que o número n recebe seu chapéu correto. Sabemos que |A_n|=(N-1)!. Mas o que queremos é |\cup_n A_n|, ou seja, o número total de permutações em que alguém é fixo.

Começamos calculando \sum_n |A_n|, mas provamos que contamos muita gente duas vezes. Pegamos esse resultado e subtraímos \sum_{i<j} |A_{i,j}|, onde A_{i,j} é o conjunto das permutações que deixam i e j fixos, ou seja, eles recebem o chapéu correto.

Agora sofremos de outro mal, o remédio causou um novo sintoma. Ao excluirmos todos os que possuem dois fixos, excluímos duas vezes aqueles que possuem três fixos, e assim por diante, pois eles foram contados mais de uma vez nessa subtração. Isso não é problema, basta colocarmos de volta esses elementos, somando ao resultado o fator \sum_{i<j<k} |A_{i,j,k}|. O problema é que nessa soma contamos duas vezes os que possuem quatro fixos.

Deu para entender o mecanismo. Felizmente, como há um número finito de chapéus, ele algum dia terminará. E sabemos que o número de permutações possíveis com n chapéus fixos é (N-n)!, isso nos permitirá calcular a soma total. Mas precisamos também lembrar que ao calcularmos \sum_{i<j<k}|A_{i,j,k}|, por exemplo, temos que somar (N-3)! um número de vezes equivalente ao número de configurações possíveis na escolha de i,j,k, ou seja, um número {N\choose 3} de vezes. Calculando {N\choose 3}(N-3)!, abrindo a fórmula binomial, nos resta apenas um fator, nesse caso, de \frac{N!}{3!}. É fácil deduzir que com os demais será a mesma coisa:

\displaystyle |\cup_n A_n|=\sum_n|A_n|-\sum_{i<j}|A_{i,j}|+\sum_{i<j<k}|A_{i,j,k}|+\ldots

\displaystyle = \frac{N!}{1!}-\frac{N!}{2!}+\frac{N!}{3!}+\ldots = N!\sum_{j=1}^{N-1} (-1)^{j+1}\frac{1}{j!}

Esse é o número total de configurações em que alguém recebe seu chapéu corretamente. Para descobrir a chance de alguém receber o chapéu, basta dividir esse valor pelo número total de configurações, ou seja, N!. Concluímos aquela missão estabelecida acima, mas queremos a chance do complementar acontecendo, e para encontrar a probabilidade de ninguém ter o chapéu correto basta tomar 1 e subtrair esse valor calculado. Teremos:

\displaystyle P(N)=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}+\ldots +(-1)^N\frac{1}{N!}

E essa é a probabilidade, no amigo secreto, de ninguém tirar a si mesmo:

hat_check_graph

É fácil perceber que essa soma tende rapidamente a \frac{1}{e}, pois nosso resultado são exatamente as somas parciais da série de Taylor de \frac{1}{e}, e é interessante perceber como esse valor já é quase exato já a partir de cinco participantes, a convergência do fatorial sempre impressiona. Como toda boa série de Taylor, o erro é da ordem do último termo somado, então é natural que a partir de 5 participantes a diferença entre essa probabilidade e \frac{1}{e} seja menor que 1/120. É notável também o fato de, com apenas um participante, a chance ser zero de ninguém tirar a si mesmo, o que era, pelo bom senso, esperado.

O resultado é interessante também por outro motivo. Se aumentamos o número de participantes, a chance de uma pessoa escolhida tirar a si própria é cada vez menor, mas o número de pessoas que podem tirar a si mesmas aumenta, a resposta de “para onde vai a probabilidade” não é trivial e é bem interessante que nenhum desses elementos domine o outro, ou seja, a probabilidade não vai nem para zero, nem para um, mas para um valor intermediário e longe de ser evidente.

2) Qual a chance da brincadeira do amigo secreto não para no meio, ou seja, não “fechar o ciclo” antes de terminar e alguém ser obrigado a recomeçar o jogo?

Essa resposta é mais simples e possui menos imagens. Começamos por um participante qualquer. Para que o jogo não pare, ele não pode tirar a si mesmo, sobram N-1 opções. Ao tirar algum deles, essa próxima pessoa não pode tirar nem ela mesma, nem o primeiro, então sobram apenas N-2 opções a ela. Assim sucessivamente, é fácil ver que o número de ciclos possíveis que não serão interrompidos será de (N-1)!. Naturalmente, basta apenas dividir pelo número total de permutações, N!, para ter a probabilidade de isso acontecer, e ela é \frac{1}{N}. Como esperado, quanto maior o grupo de pessoas, mas difícil é obter uma configuração que forneça um jogo sem interrupções.

Depois desse post de combinatória um pouco árido, termino desejando a vocês um excelente ano novo, boas férias e todas as permutações possíveis daqueles votos de fim de ano que não canso de lhes desejar, mas que cansaria de escrever.

Banco Imobiliário

Como todos, joguei bastante Banco Imobiliário em minha infância. Sonhava em morar em Morumbi ou Interlagos, tinha medo de algum dia passar perto da Av. Presidente Vargas, e com ele descobri o significado da palavra “revés”. Gostava, ainda que nunca tenha efetivamente terminado uma partida, sempre me solidarizava com os que empobreciam, deixávamos que continuassem, como se capitalismo e misericórdia combinassem, não dava certo.

Mas sempre fui assombrado pela busca pela tática ótima de se jogar esse jogo, se havia alguma. Inspirado em um estudo que li recentemente, dedico esse post a responder a grande pergunta: quais as casas em que mais paramos em uma partida? Assim, saberemos quais cores de propriedades precisamos, a todo custo, comprar ao parar.

Apesar de esse estudo já ter sido feito, não gostei da apresentação, nem da maneira como foi escrito; refaço-o, torcendo para que poucas pessoas achem, desse post, o que achei do estudo.

Para explicar como farei esse cálculo, preciso começar com um caso mais simples de jogo. Se Quico criou o xadrez para principiantes, apresento a vocês o Banco Imobiliário para iniciantes, ou, para criar uma temática, o Banco Imobiliário Zona Leste, referente à zona leste da cidade de São Paulo (figuras de Pedro Vergani, o mesmo que fez o banner do blog e diversas outras figuras desse blog):

Não há grandes surpresas nesse jogo. Usamos uma moeda e tiramos no cara-ou-coroa quantas casas andaremos: cara nos faz andar uma casa, coroa nos faz andar duas casas. Queremos analisar qual a casa mais provável de se cair e, para isso, precisamos trazer artilharia pesada da álgebra linear.

Vou precisar de uma matriz. Adoro matrizes, trabalho com elas e revolto-me com alunos de colegial que desdenham das aulas em que tiveram que aprender a “multiplicar tabelas”. Não os culpo tanto assim, é de fato bem estúpido querer multiplicar uma tabela por outra sem dar uma razão decente para isso, e hoje lhes apresento uma. Vamos criar a matriz estocástica do Banco Imobiliário Zona Leste. As regras para a matriz são: na primeira linha e segunda coluna, por exemplo, colocamos a probabilidade de, estando na primeira casa, cair na segunda casa. Como vocês sabem, essa probabilidade é ½ (tirar cara). A primeira linha dessa matriz será, portanto: 0, ½, ½, 0; ou seja, a chance é zero de ficar no mesmo lugar (você vai se mover), ½ de avançar uma casa (cara), ½ de avançar duas (coroa) e zero de avançar três. A matriz total será:

\displaystyle M=\left(\begin{matrix}0&\frac{1}{2}&\frac{1}{2}&0\\ 0&0&\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&0&0&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}&0&0\end{matrix}\right)

E ela vai nos ajudar a fazer todo o resto. A utilidade de escrevê-la, além de ficar claro e bonitinho, é a seguinte: ela representa na linha i e coluna j as probabilidades de, estando na casa número i, ir à casa número j em uma jogada. Se eu quiser a probabilidade de, estando na linha i, ir à coluna j em duas jogadas, basta multiplicar a matriz M por ela mesma! Aos que estão enferrujados em multiplicação de matrizes, eis a resposta:

\displaystyle \left(\begin{matrix}0&\frac{1}{2}&\frac{1}{2}&0\\ 0&0&\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&0&0&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}&0&0\end{matrix}\right).\left(\begin{matrix}0&\frac{1}{2}&\frac{1}{2}&0\\ 0&0&\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&0&0&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}&0&0\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&0&\frac{1}{4}&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{4}&0&\frac{1}{4}\\ \frac{1}{4}&\frac{1}{2}&\frac{1}{4}&0\\ 0&\frac{1}{4}&\frac{1}{2}&\frac{1}{4}\end{matrix}\right)

Ou seja, a chance de, estando na primeira casa, voltar a ela depois de duas jogadas é 14, a chance de estar na terceira casa depois de duas jogadas também é 14 e a chance de estar na quarta casa é ½. Mas o problema não é saber as chances de 2, 3, 10 ou 100 jogadas, queremos saber qual é a mais provável de cairmos em todo o decorrer da partida, o que é um problema diferente, mas que pode ser resolvido com essa matriz. Basta multiplicar essa matriz por ela mesma um número alto, bem alto de vezes, torcer para que ela comece a convergir para uma matriz razoável e dizer que essas serão as probabilidades em “tempo infinito”, ou seja, as chances de se estar naquelas casas depois de ter jogado muitas vezes.

Note, dizer que em um número alto de jogadas eu estarei mais provavelmente na casa X e dizer que terei passado várias vezes por X são afirmações bem diferentes, mas arrisco dizer que representam a mesma coisa, e o nome dessa afirmação é hipótese ergódica. Esse post não tem a menor pretensão de avançar nessas águas, que esse nome fique sendo, por enquanto, apenas um nome bonito para uma teoria.

Mas se elevar uma matriz ao quadrado é difícil, como elevar uma matriz a um número muito grande? Matematicamente falando, vamos elevar M a n, o número de jogadas, e depois tomar o limite para n\to\infty, ou seja, vamos dizer que n é um número muito, muito grande; o que, para Banco Imobiliário, consiste em uma excelente aproximação.


Parte geek do post, evite se não reconhecer a palavra “autovalor”. A parte rookie continua em seguida.

Os que já fizeram seu curso de álgebra linear conhecem a dica, vamos atrás dos autovalores dessa matriz e elevar esses caras a n, depois mandar n para infinito e ver no que vai dar. Isso porque, felizmente, se escrevemos uma matriz como M=UDU^{-1}, onde D é uma matriz diagonal, elevar M a n é escrever UDU^{-1}UDU^{-1}\ldots UDU^{-1} um número n de vezes, notando que os U^{-1}U do meio se cancelam, isso é o mesmo que UD^nU^{-1}, e elevar uma matriz diagonal a uma potência é simplesmente elevar seus elementos a essa potência.

Posso me colocar várias perguntas como: “e se algum autovalor for maior que 1? A matriz vai explodir!” ou “E se todos forem menores que 1? A matriz vai para zero!” ou ainda: “E se algum for negativo? Como você eleva isso a infinito?!”; mas todas elas são sanadas quando invoco um corolário do poderoso teorema de Perron-Frobenius:

Teorema (de Perron-Frobenius): Entre outras coisas (esse teorema é bem poderoso), uma matriz estocástica como a do banco imobiliário possui o autovalor 1, único (não degenerado), e não há autovalores que, em módulo, sejam maiores que ele. O autovetor associado ao autovalor 1 possui todos os seus componentes de mesmo sinal. Em particular para matrizes como as do Banco Imobiliário, esse valor próprio 1 é o maior de todos os autovalores em módulo.

Eu poderia discutir bastante a razão desses resultados, já que Perron-Frobenius é um canivete suíço, adaptando-se a vários tipos de matrizes não-negativas diferentes. No caso da do Banco Imobiliário temos o fato importante de ser perfeitamente possível estar na casa i e voltar a ela mesma após um número m suficientemente grande de jogadas, e também ser possível voltar após m+1 a essa mesma casa. Essa propriedade garante que 1 será o único autovalor de M no círculo unitário.

Esse corolário não deve surpreender ninguém, pois, se uma matriz estocástica vezes outra matriz estocástica continua uma matriz estocástica (eu teria que demonstrar isso, mas acredite em mim, é verdade), M^n deve também ser estocástica, então não pode ter autovalores maiores que 1 (que explodiriam se elevados a n\to\infty), também não poderia ter apenas autovalores menores que 1, a matriz toda iria a zero quando elevada a n\to\infty, não sobra tantas alternativas além do resultado de Perron-Frobenius. O que ele nos garante de interessante é a unicidade desse autovalor 1 e o sinal do autovetor associado.

E se você elevar todos os demais autovalores a n\to\infty, eles logo logo vão para zero. Sobra o 1. Reconstruindo a matriz multiplicando por U e U^{-1}, teremos uma surpresa, M^n com n\to\infty possui todas as linhas iguais, cujos componentes são os elementos do autovetor associado a 1. Essa surpresa é consequência da teoria ergódica, mas isso fica para outro post Dessa forma, o que queremos é esse autovetor associado ao autovalor 1.

Fim da parte geek.


O método descrito acima, se aplicado a nosso Banco Imobiliário Zona Leste, nos dará que a probabilidade de cair em todas as casas é a mesma, o que é esperado. Somos tentados a achar que no jogo do Banco Imobiliário ocorre o mesmo, mas esquecemos de elementos fundamentais da dinâmica do jogo, em particular da prisão, que muda tudo. Para explicar o efeito da prisão nas probabilidades das casas, introduzo um novo jogo, o Banco Imobiliário Zona Leste Deluxe:

Jogaremos usando um dado de seis faces. Nesse novo jogo, a matriz não será tão bonita quanto a anterior. A casa “Vá para a prisão” leva diretamente à prisão, quebrando a simetria do jogo e beneficiando as casas logo após a prisão, prejudicando aquelas que vêm antes. A matriz completa desse jogo será:

\displaystyle M=\left(\begin{matrix}0&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&0\\ 0&0&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}\\ \frac{1}{6}&0&0&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}\\ \frac{1}{6}&\frac{1}{6}&0&0&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}\\ \frac{1}{6}&\frac{1}{6}&\frac{1}{6}&0&0&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}\\ \frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&0&0&\frac{1}{6}&\frac{1}{6}\\ 0&0&1&0&0&0&0&0\\ \frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&\frac{1}{6}&0&0\end{matrix}\right)

Aquela bela simetria da outra matriz já não mais existe, a prisão é a culpada, note a penúltima linha (representando a casa “Vá para a prisão”). Analisando quais serão as probabilidades de se cair em cada uma das casas após um grande número de jogadas usando a técnica da parte geek, ou seja, multiplicando a matriz por ela mesma muitas vezes, teremos:

O que é bem diferente de uma probabilidade uniforme, como no jogo anterior.

Apliquemos tudo isso ao verdadeiro Banco Imobiliário. Seu tabuleiro é mais completo, ele é jogado com dois dados e andamos a soma dos valores tirados, possui casas de sorte-ou-revés, diversas cores e muitas propriedades. Seu tabuleiro, a quem não se lembra, é:

Não vou escrever sua matriz estocástica, não quero cuspir uma tabela de 40 linhas e 40 colunas nesse blog, mas acreditem, fiz as contas. A probabilidade de se encontrar em cada uma das casas é:

Levei também em conta a chance de 1/18 de se encontrar uma carta de ida à prisão nos espaços de sorte-ou-revés, foi o ajuste mais fino que fiz no modelo, para obter esses resultados. Ainda, ele não afeta em grande coisa a análise, pois as casas de sorte-ou-revés estão bem distribuídas no tabuleiro, apenas acentuam o efeito da prisão.

Notem que as casas rosa não são apenas as mais baratas e de pior rentabilidade, são também aquelas, juntamente com as azuis escuras, mais difíceis de atingir no tabuleiro. Interlagos e Morumbi, as tão desejadas laranjas, formam a dupla mais provável de casas para se atingir: são aquelas mais prováveis de encontrar após sair da prisão e, sendo a prisão a casa de longe mais provável, elas herdam um pouco dessa probabilidade.

Não jogo Banco Imobiliário há muito, entendo um pouco a razão. Podemos imaginar razões para a casa mais cara ser a mais provável, ou outras sutilezas descobertas na análise, mas isso é facilmente refutado pelo fato de países diferentes escolherem distribuições diferentes de valores de casa pelo tabuleiro; no jogo francês, a casa mais cara é a menos provável, substituindo o Jardim Paulista de nossa edição. Percebemos, por isso, que não é um jogo feito com tanto cuidado assim. Contudo, talvez se quando eu jogava soubesse um pouco mais sobre matrizes, mais sobre Frobenius, tivesse mais sorte no dado, talvez assim eu tivesse gostado, jogado, ganhado, ou, quem sabe, até mesmo terminado uma partida de Banco Imobiliário.

Coleção completa

Quando era criança, fui atingido pela mania dos tazos da Elma Chips como todos os meus colegas. Abria o salgadinho antes mesmo de chegar à aula, longe ainda do recreio, e recolhia o precioso prêmio do pacote: um disco plástico que servia de moeda de aposta e demonstração de habilidade no intervalo. Eu não era muito bom nisso, e não tinha tantos amigos, então minha principal fonte de Tazos eram o fandangos.

Via colegas com tubos repletos de tazos, coleções completas, era invadido por essa inveja e, talvez mais, por uma pergunta séria: como aquilo era possível? Eu colecionava havia meses e não chegara perto da metade da coleção, possuía muitos repetidos e aquele do Papa-Léguas era mais difícil de encontrar que filhote de pomba. Não imaginava como aquilo era possível, culpava os pais do garoto sortudo, deviam ter comprado caminhões de baconzitos, e, no fundo, queria saber: de quantos fandangos eu precisaria para completar minha coleção?

Essa pergunta está mal-feita, vamos melhorá-la. Mais interessante seria perguntar: qual o número médio, o valor esperado, de salgadinhos que preciso comprar para completar minha coleção? Em outras palavras, a partir de qual número de fandangos é mais provável que eu já tenha a coleção completa que o contrário? E, como pergunta bônus, quão improvável se torna, a partir desse número, não obter os preciosos tazos?

Havia tazos mais raros, é verdade, mas a pergunta já está bem difícil, então tomo como hipótese que a chance de tirar qualquer um dos tazos é a mesma. E para continuar, precisamos primeiro saber quantos são eles, e eis a coleção toda:

Se você está interessado na resposta, mas não conhece tanto de probabilidade, o que segue não será tão interessante (vou fazer as contas, é o que faço da vida, não consigo evitar). Mas você pode pular para o final do post e ver as conclusões sem culpa, se confiar em mim. Se, no entanto, você entende de probabilidade, jamais confie em mim.

Suponha que eu já tenha k tazos diferentes, sendo n possíveis, a chance de eu tirar um repetido é \frac{k}{n}. Assim, a probabilidade de eu precisar de exatamente s salgadinhos para tirar um diferente é \left(\frac{k}{n}\right)^{s-1}\left(1-\frac{k}{n}\right), que é uma parte a chance de eu tirar s-1 repetidos e outra parte, no s-ésimo salgadinho, tirar um diferente. Essa é P(s), a chance de eu precisar de s fandangos para tirar meu tazo diferente. Para calcular o valor esperado de salgadinhos até o próximo tazo diferente, ou seja, de s, basta tomar:

\displaystyle \sum_{s\geq 0}P(s).s=\sum_{s\geq 0}\left(\frac{k}{n}\right)^{s-1}\left(1-\frac{k}{n}\right).s=\frac{1}{1-\frac{k}{n}}

Essa última passagem fiz na malandragem, vale a pena explicar. Vou chamar \frac{k}{n} de x porque digitar essas coisas no WordPress cansa. Vou aplicar a distributiva, manobrar os índices e converter tudo em uma progressão geométrica de soma bem fácil:

\displaystyle \sum_{s\geq 0}x^{s-1}\left(1-x\right).s=\sum_{s\geq 0}x^{s-1}s-\sum_{s\geq 1}x^s.s=\sum_{s\geq 0}x^s(s+1)-\sum_{s\geq 0}x^s.s=\sum_{s\geq 0}x^s=\frac{1}{1-x}

Então o número esperado de salgadinhos que devo comprar é a soma dos salgadinhos esperados para cada tazo que vou tirando, ou seja:

\displaystyle \sum_{k=0}^{n-1}\frac{1}{1-\frac{k}{n}}=\frac{n}{n}+\frac{n}{n-1}+\ldots+\frac{n}{2}+\frac{n}{1}

Sem magia até agora, eu apenas expandi a série. Eu poderia calcular exatamente esse valor para n=80, mas gosto de resultados mais gerais, e noto que essa soma é n vezes a série harmônica. Ela diverge, e não é surpreendente que eu precise de infinitos fandangos para tirar infinitos tazos, mas felizmente conhecemos razoavelmente bem o comportamento dessa série. O número esperado de salgadinhos necessários para completar uma coleção de n tazos é, portanto, nH_n, onde H_n é o n-ésimo número harmônico. Para n grande, podemos usar a aproximação H_n\approx \log n+\gamma, onde \gamma é a constante de Euler-Mascheroni (aproximadamente 0,5772).

Chegamos ao valor 80*(log(80)+\gamma)=396,74, certamente aproximado. Esse é o número médio de vezes que crianças completam suas coleções. Temos a média, a próxima pergunta é: quão provável é estar longe da média? Ao invés de tentar calcular com manobras intrincadas as flutuações desse número em torno da média, tomarei, a princípio, o exemplo de cinco crianças: Aline, Bruno, Carlos, Daphny e Eduardo. Eles começam suas coleções juntos e têm poucos amigos, logo, contam apenas com os salgadinhos para obter os preciosos discos. Eis uma simulação que fiz do resultado da coleção dessas cinco crianças:

Notamos algumas coisas interessantes. Primeiro, teremos que gastar aproximadamente metade dos salgadinhos totais necessários apenas para conseguir os dez últimos tazos; a matemática é cruel com coleções quase completas. Segundo, o valor necessário para completar é muito diferente nos cinco casos, isso exige um estudo mais sério.

Para tal, calibramos o computador para simular a coleção de tazos, ou o álbum de figurinhas (o problema é o mesmo) de 20.000 crianças. Fiz um histograma com a quantidade de salgadinhos necessária para completar toda a coleção e a porcentagem das crianças simuladas que precisaram daquela quantidade de salgadinhos para obterem o último tazo.

Notamos a larga variância dessa distribuição: haverá um grande número de crianças sortudas e um grande número de azaradas! Confirmamos o valor esperado, 396 parece de fato uma boa média dessa distribuição, e confirmamos o quão sórdido é o raciocínio da Elma Chips: algumas crianças precisariam de 900 salgadinhos para terem a coleção completa!

Contudo, esse modelo não representa bem a realidade, talvez apenas a minha, mas a maior parte das crianças tinha como maior objetivo as trocas de tazos, as disputas, completar a coleção contando com o salgadinho dos outros. Eu mesmo consegui dois amigos para fazer uma sociedade, ainda que cada um quisesse, para si, uma coleção completa. E esse será meu modelo de trocas: os amigos são amigos perfeitos, todo tazo repetido é compartilhado e o objetivo maior é, para y amigos, formar y coleções completas.

De forma não surpreendente, o número de fandangos que cada criança deve comprar reduz drasticamente com as trocas. Se ele antes precisava gastar quase um ano de lanches de salgadinho para encontrar os dez últimos, esses famigerados dez podem ter sido encontrados por algum colega que já até o tirou uma vez. Simulei o resultado com grupos de 1, 5, 10 e 30 crianças, sendo os resultados no histograma abaixo:

Esses valores são quantos fandangos cada um precisará comprar, ou seja, no grupo de dez, se dez amigos precisaram de 2000 fandangos para fechar a conta, contabilizo 200 para cada criança. Os valores médios de salgadinhos individuais obtidos para 1, 5, 10 e 30 são, respectivamente e aproximadamente, 398, 194, 154 e 120. Fiquei curioso para estudar a convergência dessa série, se vai para algum lugar (certamente converge, sendo decrescente e limitada em 80) e se esse lugar é 80, uma utopia em que todas as crianças do país montam suas coleções juntas; mas esse post já está longo e tanto salgadinho não deve fazer bem a esses meninos.

Por fim, noto que a amizade é o melhor investimento, você pode, em poucos meses de lanche, completar sua coleção de tazos ou figurinhas se encontrar, em uma sala de aula, trinta amigos perfeitos. A probabilidade desse fato, no entanto, mesmo em um modelo bem otimista, é extremamente baixa.

O corolário do relógio cruel

Hoje falamos de álgebra, mas não aquela álgebra linear, coisa séria, de gente grande. Comento com vocês um resultado interessante e bonito da teoria de grupos, chamado teorema de Lagrange. E antes de enunciá-lo, apresento seus elementos, vamos conversar sobre o que é um grupo.

A definição formal não é difícil, mas prefiro definir com palavras a símbolos. Um grupo é um conjunto de elementos que podem ser “somados”, não importando muito o que essa ideia de soma seja. É importante que haja um elemento do conjunto “eleito” como o elemento neutro, aquele que, somado a qualquer um, não afeta esse qualquer um. Na soma convencional, ele é o zero. Na multiplicação, ele é um 1. Nas multiplicação de matrizes, é a identidade. Também é importante que você, tendo somado um elemento, sejá capaz de “subtrai-lo”, ou seja, realizar a operação inversa. Na soma tradicional, o inverso de a é -a, na multiplicação, é 1/a. Nas matrizes, teremos a matriz inversa, o que nos prova que as matrizes não formam um grupo na multiplicação delas. Por fim, queremos que o conjunto seja fechado, ou seja, é impossível, com somas de gente do conjunto, obter alguém de fora dele.

Exemplos de grupos são fáceis de se encontrar: os inteiros com a operação soma, os reais sem o zero com a operação vezes, o conjunto de matrizes quadradas inversíveis de ordem n e os conjuntos de restos de divisão. Esse último merece alguma atenção, pois não só tem aplicações interessantes como é crucial em algumas áreas dessa matéria.

Ao fazer uma divisão por, digamos, 5, temos cinco opções como resto, 0, 1, 2, 3 e 4. Se um número dividido por 5 deixa resto 3 e outro número deixa resto 3, a soma deles deixará resto 1, essa será a regra de nosso grupo “resto de 5”, denotado \mathbb{Z}/5\mathbb{Z}. É como se você somasse números normalmente e, a cada vez que eles passam 5, você tira 5 do número. Nesse grupo, 1+1=2, 2+2=4 e 3+3=1. É fácil ver que todos possuem inverso, sendo, por exemplo, o inverso de 3 o número 2, o inverso de 4 o número 1 e assim por diante. Em particular, ele é um grupo finito, e por isso gosto dele. Neste post, vou falar apenas de grupos finitos, eles já atingem uma complexidade suficiente para deixar qualquer matemático feliz.

Se você acha o grupo descrito acima artificial, veja seu relógio. Ele é o grupo \mathbb{Z}/24\mathbb{Z}, pois 3+3=6, 6+6=12, mas 12+12=0, somar doze horas ao meio-dia não é ir à hora vinte e quatro, é voltar à meia-noite, hora zero.

E se falamos de grupos, podemos falar de subgrupos. Algum subconjunto de nosso grupo pode ser, em si só, um grupo. No caso do relógio, os elementos 0, 3, 6, 9, 12, 15, 18 e 21 formam um subgrupo. Eles herdam a operação do grupo original e operados entre si continuam entre si, não há como você, somando esses horários, atingir um horário que não esteja nessa lista. O grupo total possui 24 elementos, e esse subgrupo possui 8 elementos. E o que o teorema de Lagrange nos diz é isso:

Teorema (de Lagrange): O número de elementos de um subgrupo de um grupo finito é sempre um divisor do número total de elementos do grupo.

No nosso caso, teremos que 8 é um divisor de 24. Como consequência, podemos perceber que todo grupo que possui um número primo de elementos não possui subgrupo que não seja ou ele mesmo, ou um subgrupo composto apenas pela identidade. Por mais elaborada que seja a construção de seu grupo, se ele possui 11 elementos, não possui nenhum subconjunto que em si seja um grupo, e esse é um resultado bem divertido.

A prova desse teorema não é tão trivial para quem começou agora a ver grupos, então dou apenas uma ideia da demonstração. Se G é um grupo finito e H \subset G é também um grupo com a mesma operação, logo é um subgrupo, então vamos chamar os elementos de H de h, h_2, h_3\ldots. Se H=G, o teorema está provado para esse caso, então vamos supor que H \neq G, tomemos um g\in G que não está em H. Note que se g\not\in H, então a operação de g com qualquer elemento de H também não está em H. Por quê?

Sabemos que H é um grupo, então todos lá possuem inverso. Se gh_i = h_j, poderíamos operar os dois lados da equação com h_i^{-1} pela direita e obter g = h_jh_i^{-1}. Se escrevemos g como uma composição de elementos de H, ele tem que estar em H, o que é absurdo por hipótese.

Intuitivamente, a ideia é pensar em G como um cilindro e H como um disco desse cilindro, como essa figura mostra:

O subgrupo H gera, para cada elemento que não pertence a si, todo um anel novo de elementos, apesar de eu hesitar em chamar isso de anel porque, em álgebra, esse nome já é usado para outra coisa, então prefiro chamar de círculo. Ora, dá pra perceber que todo elemento de G pertencerá ou a H ou a um desses círculos formados por H. Todos os círculos possuem a mesma quantidade de elementos (pois se gh_i = gh_j, podemos cortar g dos dois lados e provar que h_i = h_j), logo, o número total de elementos de G deve ser um múltiplo do número de elementos de H.

Esse teorema é um jeito de interessante de entender a razão de nossas horas serem contadas em 12 ou 24, esses números possuem muitos divisores! Como se houvesse um corolário do relógio cruel: não são feitos relógios com um número primo de horas, como, por exemplo, esse relógio cruel:

Nesse caso, nenhuma hora inteira seria sensata para se prescrever um medicamento, pois todas elas atravessariam todo o relógio antes de voltar para a mesma hora. Em outras palavras, percorrer este relógio de duas em duas, três em três ou quatro de quatro horas atravessará todo o relógio antes de repetir a primeira hora, pois o número de elementos de qualquer subgrupo deve ser um divisor do número de elementos do grupo. Isso faria o paciente acordar em todas as horas inteiras que deveria estar dormindo, e o mesmo aconteceria se, em nossos relógios, um médico receitasse um comprimido de sete em sete horas. Pode parecer uma aplicação estúpida, mas não é; o fato de nossa divisão do dia em vinte e quatro horas tem como razão histórica a grande quantidade de divisores que possui.

Você certamente pode chegar a essa mesma conclusão usando propriedades elementares de MMC e MDC, mas essa visão, mais abrangente dos grupos finitos, é capaz de nos levar a abstrações mais profundas e a grupos mais complexos, alguns nem numéricos, mas este resultado ainda vale. Muita coisa é grupo, e, em todos os finitos, vale o teorema de Lagrange.

Férias

Nesse post, declaro férias do blog por catorze dias. Depois de seis meses em uma frequência de mais de um post por semana, preciso de um tempo para respirar e colocar os posts em dia sem comprometer a qualidade. Estou de férias, e isso significa que a inspiração é fraca enquanto não estou estudando e trabalhando. Férias são férias, e isso inclui dos textos desse blog.

Aos que ficam, ou que passam por aqui pela primeira vez, deixo uma lista de meus quatro posts favoritos, caso ainda não os tenham visto:

No cassino de Parrondo.

A pior forma de governo.

Aniversários.

Informação e demônios.

Até dia 17.

O teorema de Szemerédi

Esses dias, saiu o resultado do prêmio Abel 2012! Se a matemática tivesse um Nobel, seria o prêmio Abel. Em muitos sentidos, ele me parece mais justo que a medalha Fields, que é atribuída apenas a matemáticos cuja idade é menor que 40 anos e, dessa forma, ignora avanços matemáticos dos mais experientes. Muitos vão dizer que matemático bom é matemático novo, gosto de lembrar que Weierstrass demonstrou o teorema que leva seu nome quando já passava dos 70, mas esse debate vai longe.

E o ganhador foi Endre Szemerédi, um matemático que trabalha na área de combinatória extrema. É uma área de demonstrações elementares e complicadas, e com elementar eu quero dizer “que não se apoia em resultados sofisticados”, ou seja, bastante coisa é demonstrada na raça e todas as provas acabam saindo bem elaboradas. Caracterizar a área é mais fácil com exemplos, e o melhor deles é o próprio teorema de Szemerédi, cujo tipo de pergunta que ele se dispõe a responder é: dados todos os números de 1 a 10.000, quantas números eu posso escolher antes de, com eles, poder formar uma progressão aritmética de tamanho k?

E essa pergunta não é fácil, pois a escolha de uma trinca pode atrapalhar a escolha de outras. Para entender a pergunta com mais cuidado, é mais fácil pensar em um jogo. Eu tomo os números de 1 a 100, por exemplo, e você pode ir escolhendo números. O desafio é: quantos você consegue escolher antes de, com os que você escolheu, formar uma P.A. de três elementos? Digamos que você escolha o 1 e o 2, já não pode escolher o três. Se escolher o 4 e o 6, não pode mais escolher o 8, e assim por diante. Esse tipo de problema, da classe de combinatória extrema, é tratado pelo teorema de Szemerédi.

Ele não te conta quantas exatamente você pode formar, ele vai além, com um resultado bonitinho. Se você está interessado em não formar progressões aritméticas de tamanho k (no exemplo do jogo k=3), e deve tomar números de 1 a n (que no exemplo foi 10.000, depois 100), eis o que o teorema de Szemerédi vai te contar: dado o jogo descrito acima, com você querendo evitar progressões aritméticas de tamanho k, eu sempre posso escolher um n suficientemente grande para que você, ainda que seja o melhor jogador do mundo nisso, não possa escolher mais que 1%, ou 0,1% dos números disponíveis, ou 0,001%, eu posso, aumentando o n, estabelecer uma porcentagem tão pequena quanto eu quiser dos números disponíveis para você escolher.

Pensando um pouco, quanto maior for o intervalo de números possíveis, maior é o número de razões possíveis para a P.A., mas esse resultado não é intuitivo e é, aliás, bem divertido, eu posso tomar um n tão grande a ponto de deixar uma fração de 10^{-23} desses números possível de ser escolhida, mesmo que você use a melhor tática possível de escolha de números.

Falar em aplicações desse teorema é algo um pouco mais complicado, deixo para esse belo texto a respeito. Mais interessante que isso é tentar olhar de relance as engrenagens da demonstração, que é uma das mais sofisticadas que já vi. Enquanto muitos teoremas matemáticos possuem uma “linha direta” de demonstração (exemplo: cobre com abertos, tira uma subcobertura finita, prova que existe uma bola aberta centrada no ponto que não toca na cobertura, e você provou que todo espaço métrico compacto é fechado), o teorema de Szemerédi precisa de um diagrama para você entender o caminho que ele fez e, somente esse diagrama, já parece a penúltima fase do Metroid de Super Nintendo.

Você começa dos primeiros fatos (F’s), atravessa os lemas (L’s) e vai provando flecha por flecha até reunir ferramentas o suficiente para provar o T, o teorema de Szemerédi. Essa demonstração ganhou um espaço no meu coração apenas pelo pequeno carrossel no diagrama. E esse teorema possui aplicações também pelos resultados intermediários que demonstra, em especial o lema de regularidade de Szemerédi, usado para diversos outros resultados. E se não conseguimos contemplar completamente o poder e as aplicações desse teorema, ao menos apreciemos o intrincado jogo de demonstrações de sua prova que é, muito justamente, digno de um dos maiores matemáticos vivos da atualidade.

Informação e demônios

Sorry, but you must be THIS hot to get in.

Uma das leis físicas mais mal citadas, em diversos contextos e por ser um pouco difícil de explicar, é a segunda lei da termodinâmica: a lei responsável por prever que, ao colocar sua panela no fogo, não é o fogo que esquenta e ela que esfria; mas o contrário. Ela tem uma formulação complicada, a definição de entropia, de desordem e de reversibilidade, não vou me meter nisso hoje. Uma consequência dela, no entanto, é a seguinte propriedade: um sistema em equilíbrio térmico (todo mundo à mesma temperatura) precisa gastar energia para criar uma diferença de temperatura, ou seja, um lado quente e um frio. E essa propriedade é bem evidente, não por menos sua geladeira é ligada na tomada: ela usa essa energia para criar um ambiente frio (o interior do refrigerador) e um quente (aquela parte atrás que você usa para secar roupas e não devia).

Quando esse princípio foi formulado, no meio do século XIX, foi um dos pais da termodinâmica, o gigante na física James C. Maxwell, o primeiro a elaborar uma tortuosa ideia em busca de uma melhor compreensão da lei. Um bom jeito de entender uma lei da física é tentar imaginar um sistema que a viola, e foi o que ele fez. Imagine uma caixa com um gás, dividida em dois compartimentos (esquerda e direita) separados por uma parede. Essa parede, contudo, possui uma pequena porta, e essa porta é controlada por um pequeno demônio que possui informações sobre cada partícula na caixa. Cada vez que uma partícula rápida do lado esquerdo se aproxima da porta, o demônio a deixa passar para o direito; e cada vez que uma partícula lenta no lado direito se aproxima da porta, o demônio a deixa passar para o lado esquerdo. Essa figura ajuda, tirada do site phys.com.

Como temperatura não é nada mais que a medida da agitação média das partículas, esse demônio acaba de separar o gás em um lado quente e um lado frio. Se essa porta for leve o suficiente, ou uma porta rolante de atrito zero, o trabalho de abrir a porta é nulo e o demônio, sem gastar energia, criou uma diferença de temperatura. Sem precisar ligar na tomada, o demônio criou uma geladeira. Essa ideia, que de fato é um pouco absurda, ainda assim tenta provar um ponto: alguém com bastante informação sobre o sistema pode violar a segunda lei da termodinâmica.

Gostamos de nossas leis, não queremos que elas sejam violadas tão facilmente. O demônio de Maxwell assombrou físicos por quase um século, demoramos para perceber onde estava a energia gasta pelo demônio para dividir o gás em quente e frio. Enquanto muitos tentaram atacar a parede no problema, ou a própria natureza irreal da situação, a resposta estava no cérebro do demônio.

Maxwell foi muito malandro na escolha de palavras, pois o problema logo no início tenta te enganar: ele usa um demônio, uma criatura imaterial, para fazer o serviço. Ele sabe tudo, ou ao menos sabe o que se passa em torno da porta, e decide abrir ou não a porta com essa informação. Mas precisamos imaginar que, se ele sabe, essa informação está armazenada em algum lugar. Surpreendentemente, a energia gasta pelo demônio de Maxwell está no fato de sobre-escrever a informação que possuía sobre a partícula levando em conta o fato de ter aberto a porta e tê-la deixado passar.

Essa resposta parece um pouco roubada, mas foi uma das grandes descobertas do meio do século XX, o nascimento da teoria da informação. Quando os computadores começaram a surgir, muita gente se colocou a tentar estabelecer os limites de cálculo de uma máquina daquelas, e quanta energia ela gastaria para realizar operações. No início, acreditava-se que toda operação feita pelo computador possuía uma energia mínima para ser realizada, o valor k_BT\log 2, onde k_B é a constante de Boltzmann e T é a temperatura. Esse limite, proposto por von Neumann, não está correto, mas quase. Se estivesse correto, seria impossível criar computadores funcionais, a quantidade de energia necessária para fazê-los rodar seria alta demais e resfriá-los seria quase impossível. Apenas em 1961 Laudauer explicaria o limite corretamente: apenas uma operação do computador precisa de gasto de energia: a operação de apagar uma memória.

O argumento de Laudauer é simples e bonito. Vamos pensar na forma mais simples de se armazenar uma informação: o bit. Essa variável vale 0 ou 1, e deve ser armazenada de alguma forma, seja uma alavanca para um lado e não para outro, seja um aparato que permite ou não passar corrente. De forma bem geral, representamos o bit da seguinte forma:

Essa figura é um potencial, que podemos deformar à vontade, mantendo uma pequena bolinha de um lado e não do outro, representando o bit 1, enquanto no lado esquerdo seria o 0. Vamos supor que a temperatura da bolinha seja baixa o suficiente para que a chance de mudar de lado nesse potencial seja desprezível, como uma colina alta demais para que a bolinha vermelha, na velocidade em que está, possa atravessar e chegar ao outro lado.

Queremos operar esse bit, transformá-lo de 1 em 0, ou seja, fazer a bolinha passar da direita para a esquerda. Esse processo é o equivalente a sobre-escrever uma informação: devemos primeiro esquecer o que havia e depois forçar a bolinha a ficar do lado que queremos. A primeira coisa que precisamos fazer, portanto, é descer a barreira e “apagar” a informação:

Agora a bolinha passeia livremente entre os dois bits. Esse gif não é muito honesto, a bolinha, para ser coerente com a física, precisa ir e voltar muitas vezes, esse processo de descer a barreira deve ser feito de forma quasi-estacionária, ou seja, devemos descer a barreira levando um tempo muito maior que o tempo característico da bolinha de ir de um lado para o outro. Assim, a bolinha faria o caminho de ida e voltas muitas vezes antes de ver a barreira descer. Logo mais discutiremos se isso é realmente possível.

O próximo passo, escrever a informação, consiste em levantar a barreira de potencial de forma a forçar pouco a pouco a bolinha a ir para o lado que queremos. Enquanto ela vai e vem, vamos aumentando a barreira da direita. Isso forçará a bolinha a ficar confinada na esquerda. Em seguida, descemos a barreira da direita e temos a bolinha confinada do lado que queremos. O processo todo é resumido no seguinte gif, feito com algum esforço e uma tarde livre:

Vamos conversar agora sobre cada etapa desse processo, e as energias envolvidas. Queremos saber se precisamos gastar energia para sobre-escrever a memória e, se precisamos, em qual etapa exatamente. Para tal, vamos dar nomes às etapas:

Para entender o que está acontecendo, precisamos de algumas noções de termodinânica. Dizemos que um processo é reversível quando não há aumento de entropia, o caminho inverso pode acontecer.  É importante notar que todo processo reversível deve ser quasi-estacionário: é necessário que cada ponto desse processo seja um estado de equilíbrio, o equivalente a dizer, de maneira grosseira, que não podemos mexer o sistema muito rapidamente se temos a pretensão de seguir o caminho inverso. A ideia é mover um pouco, bem pouco, esperar o equilíbrio chegar, mover mais um pouquinho, esperar o equilíbrio chegar, e continuar dessa maneira. Em uma situação idealizada, podemos dizer que as mudanças são infinitesimais e que o processo, a cada instante, está em equilíbrio.

Note que esse raciocínio não é de todo desonesto, pois estamos buscando o limite mínimo de gasto de energia. Na busca do limite, trabalhamos com a situação mais idealizada possível, e concluímos que melhor que isso não conseguiremos jamais.

Assim, as etapas são realizadas em um processo quasi-estacionário, de forma a estar constantemente no estado de equilíbrio. Queremos um pouco mais que quasi-estacionário, queremos fazer todas essas etapas em processos reversíveis. Se conseguíssemos, como não aplicamos nenhum trabalho na bolinha (ela não ganhou energia nenhuma, não mudou sua altura máxima atingida no poço), não teremos gasto energia nenhuma e teremos trocado a bolinha de poço. É então que Landauer nos diz: isso não é possível. Para ser mais exato, todos os processos podem ser feitos sem gastar energia, exceto passar de A para B.

Apagar uma memória é a única operação que gasta energia. Nosso raciocínio do “quasi-estacionário” não se aplica ao processo AB, e é por isso que nossa ideia falha. Quando dizemos “um processo lento”, queremos dizer lento em relação ao tempo que o estado leva para estar em equilíbrio. Mas conforme vamos descendo o poço, notamos que, se o poço é muito alto, o tempo característico para que a bolinha mude de poço é muito alto. Ora, na situação A o tempo que a bolinha leva para mudar de poço é infinito, e na situação B ele é finito, é, portanto, impossível realizar o processo AB de forma quasi-estacionária, porque você, em algum momento, terá o tempo característico de mudança de poço igual ao tempo característico de descer o poço. Em outras palavras, é impossível realizar um processo mais lento que um processo cujo tempo característico para atingir o equilíbrio é infinito!

Todos os outros processos, se feitos de forma bem devagar, podem ser realizados de forma completamente reversível. O que pega é o processo de apagar a memória, de deixar o bit indeciso, e é aí que o demônio perde. Em seu cérebro, ou em seu supercomputador, ele deve, a cada vez que deixa uma partícula passar, reescrever sua informação sobre a trajetória da partícula, porque, pela vontade dele, ela mudou de lugar e não será mais a mesma. O demônio gasta energia, uma forma de “energia mental”, para reajustar seu conhecimento à nova configuração.

Isso resolve o problema do demônio de Maxwell, que deve gastar energia para criar essa geladeira microscópica. Por mais conhecimento que tenha, ele deve apagar e sobre-escrever bits no momento em que decide que a partícula mudará de lado. Para o demônio, nessas condições, o maior esforço não é lembrar, analisar ou mudar a partícula; seu maior esforço é, de forma quase poética, esquecê-la.