O teorema do sanduíche de presunto

Comentei em outro post sobre um de meus teoremas favoritos, o das quatro cores, mas, em termos de nomenclatura, o que leva a taça é o teorema do sanduíche de presunto, ou do misto quente.

É um resultado bem geral e impressionante, de um ramo da matemática chamado “teoria da medida”, que estuda o conceito de “tamanho” dos objetos, quais podem ser medidos e o que seria essa medida. Essa área possui diversos resultados interessantes (como a relação do axioma da escolha com a impossibilidade de medir todos os conjuntos, ou com o aparecimento de aparentes paradoxos), sendo um deles esse teorema bem poderoso que nos permite dividir em duas metades bastante coisa.

Teorema (de Stone-Tukey, ou do sanduíche de presunto): dado um sanduíche com qualquer distribuição de pão, presunto e queijo, sempre é possível, com um único corte, dividir o sanduíche em duas metade contendo cada uma metade do presunto, metade do queijo e metade do pão.

Eu poderia formular como “um sanduíche de três ingredientes”, mas você seria tentado a pensar no bauru, e o pão conta como ingrediente. Teríamos, para dar certo, que tirar o tomate, e, como se sabe, por teorema, bauru sem tomate é misto.

O teorema é muito geral, vale para qualquer distribuição de ingredientes e qualquer formato de sanduíche. De forma geral, dizemos que é possível com um único corte plano dividir três elementos em pedaços de mesma medida. O teorema não nos dá o corte, tampouco diz que ele é único, mas garante que existe ao menos um, e isso já é bem impressionante.

Em duas dimensões, podemos chamar esse de teorema da panqueca. Cobrindo uma panqueca com geléia e manteiga de amendoim, existe sempre um corte, uma linha, que divide a panqueca em duas metades contendo, cada uma, metade da geléia e metade da manteiga de amendoim.

Esse resultado certamente se aplica a um caso discreto, não contínuo. Na falta de exemplos, tomo uma piscina de bolinhas com três cores de bolas. O teorema nos garante que existe sempre ao menos uma maneira de “fatiar” a piscina, ou seja, há um plano que a corta, de forma a separá-la em duas metades contendo cada uma a mesma quantidade de cada cor de bolinha. O caso em duas dimensões pode ser visto nessa figura:

Nesse caso, possuo, em cada metade, 7 vermelhas e 8 azuis. Esse corte não é necessariamente único, o teorema se encarrega apenas da existência.

Que fique, portanto, como conclusão do teorema isto: não há desculpa para pegar a maior metade, pois, dado um misto quente, sempre existe uma maneira justa de, com uma faca, reparti-lo com justiça.

Anúncios

2 ideias sobre “O teorema do sanduíche de presunto

  1. Cassio Fraga

    Ficou massa!
    Vi aqui que o artigo wikipedia desse teorema ainda não tem versão em português. Está certo isso? Fica a reflexão. =P

    Resposta

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s