As condições de Tchebychev

O post de hoje não é nada longo, mas um resultado que já me ajudou muitas vezes e nunca o vi em outro lugar além de no livro do Demidovich. E como todo o resto desse livro, ele não demonstra, então nunca vi uma justificativa para uma palavra específica daquele resultado, que desde sempre me atormenta. Um dos motivos de não ter encontrado, acho, foi o fato de Tchebychev ser escrito cada vez com uma ortografia diferente, de acordo com os caprichos do autor ou editor, o que escrevo é respeitando a grafia da tradução que tive do Demidovich.

Aos que não conhecem o livro, ele é um monstro russo de mais de mil exercícios espalhados pelas matérias de cálculo, é como uma tábua de multiplicação para o cálculo diferencial, um excelente treinamento de Kumon a quem quer ficar rápido nessas coisas. Ainda, nele encontrei um resultado simples e bem interessante, que hoje compartilho convosco.

Integrando funções na mão, sempre podemos nos deparar com a possibilidade de estar tentando realizar o impossível: encontrar uma primitiva a uma função que não possui primitiva. Poucos cursos de cálculos dão a devida atenção a essa diferença: primitivização e integração não são a mesma coisa. Enquanto é famoso o fato de que nem toda função integrável possua primitiva (e^{-x^2} é o exemplo mais clássico), encontrar uma função F que derivada dê f (o processo de primitivização) não garante que a função seja integrável, apesar dos rumores. Esse exemplo no link é um pouco trabalhoso, e bem poderoso, é uma função com primitiva que não é integrável em lugar nenhum, um contra-exemplo bem interessante.

Mas não consigo me lembrar de nenhum teorema que consiga me dizer quando uma função possui ou não primitiva elementar, ou seja, quando vale a pena sair tentando transformações, integrações por partes ou separações de polinômios em uma função que não me dá chance de integrar, que não possui uma primitiva suficientemente simples para ser encontrada com minhas técnicas baratas de cálculo I. E as condições de Tchebychev são o único teorema desse tipo que já vi:

Condições de Tchebychev: Seja a integral:

\displaystyle \int x^m(a+bx^n)^pdx

Então esta integral pode ser expressa por meio de uma combinação finita de funções elementares somente nos seguintes casos:

  1. Quando p é inteiro.
  2. Quando \frac{m+1}{n} é um número inteiro. Nesse caso, use a substituição a+bx^n = y^s, onde s é o denominador de p.
  3. Quando \frac{m+1}{n}+p é um número inteiro. Nesse caso, use a substituição ax^{-n}+b = y^s, onde s é o denominador de p.

A palavra que me intriga nesse resultado é o somente, pois nunca vi teoremas ou lemas com manobras para provar que uma função não possui primitiva elementar, mas isso provavelmente é ignorância minha. Apesar de não conhecer as engrenagens desse teorema, o resultado é bem útil, e salvou-me a vida vez ou outra, possuindo um ar de mistério que, apesar de me incomodar, ainda me encanta um pouco.

Anúncios

2 ideias sobre “As condições de Tchebychev

  1. Vítor Ribeiro

    Cara, o Rafael Rezende me indicou seu blog há alguns dias. Não li tudo ainda (muita coisa é muito abstrata pra mim, faço Química), mas achei muito interessante você falar deste teorema, pois eu também tive contato com ele através do Demidovich. Eu já havia pesquisado uma vez por cima, mas com certeza é uma matemática num nível bem acima da minha (durante anos me preocupei em aprender a resolver problemas e entender interpretações geométricas, passei a me interessar por demonstrações rigorosas há pouco tempo, pois pretendo trabalhar com Química Quântica). Então, após uma pesquisa rápida no Google, achei esta referência (http://www.encyclopedia.com/doc/1G2-2830900876.html) que fala um pouco da história deste teorema. O artigo citado, de 1853, achei também no Google: http://portail.mathdoc.fr/JMPA/PDF/JMPA_1853_1_18_A5_0.pdf

    Provavelmente, eu consegui encontrar isto antes de você pois, como eu só sei ler inglês além de português, procurei pela grafia ‘Chebyshev’, que é a que eu já encontrei em alguns handbooks de tabelas de integrais e afins.

    Espero ter ajudado. Abraço!

    Resposta

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s