O famigerado laplaciano

O terceiro semestre de cálculo na faculdade é inesquecível. Se o seu curso foi parecido com o meu, você atravessou integrais duplas, triplas, de linha e de superfície, teoremas de Gauss, de Green e de Stokes, todas aquelas parametrizações e todas aquelas integrais. Não são poucas as áreas na física que usam esses conceitos, em especial a mecânica dos fluidos e o eletromagnetismo. As aplicações são tantas que, muitas vezes, as demonstrações dos teoremas e representações dos elementos dessa teoria deveriam ser tão naturais para nós quanto ver água descendo o ralo, mas nosso professor de matemática dificilmente está interessado em água descendo o ralo e acaba sacando da manga exemplos não tão intuitivos; meu professor de sistemas dinâmicos, por exemplo, achava a teoria mais clara quando a aplicava a teoria dos números, o que era para ser uma explicação do pêndulo duplo acabava virando o estudo da função “menor inteiro” para provar algum teorema de Fermat.

Mas todas essas operações têm uma interpretação física bem clara e bonita, mas o laplaciano, esse incompreendido, sempre escapa aos professores de cálculo. Tentar explicá-lo como “o divergente do gradiente” é dar um nó nos conceitos. Você precisa imaginar a taxa de dispersão de um campo que aponta para a direção de maior crescimento, isso me dá dor de cabeça apenas em tentar e não me traz nenhuma ideia clara e física do que é \nabla^2 T.

Nessa hora, vale mais voltar às raízes do cálculo e tentar atacá-lo com métodos finitos, ou seja, fingir que a derivada é apenas um quociente da forma \Delta T / \Delta x. Isso é bem feio e eu jamais faria isso em uma demonstração séria, mas é a técnica padrão para uma resolução numérica da equação de Poisson ou de Laplace, então pode nos ajudar. Se eu decompuser o espaço em intervalos de \Delta x_i e tomá-los iguais e no valor da unidade, a derivada discretizada torna-se x_{i+1}- x_i. A segunda derivada será apenas tomar esse valor e subtrair ao da derivada do ponto anterior, ou seja, x_{i+1}- x_i - x_i + x_{i-1} = x_{i+1} + x_{i-1} - 2x_i. Esse é um método finito bem adequado para calcular numericamente a segunda derivada. Em uma dimensão, ela coincide com o laplaciano.

Se o meu campo fosse em duas dimensões, eu poderia representar a discretização do meu campo com dois índices, cada ponto seria da forma x_{i,j}. A segunda derivada em uma direção seria a expressão acima variando o i e na outra direção seria a variação em j. O laplaciano, soma das segundas derivadas cartesianas, seria: x_{i+1,j} + x_{i-1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}.

Se essa expressão ainda não lhe diz nada, experimente dividir por 4. Você terá:

\frac{1}{4}\nabla^2X\approx \frac{x_{i+1,j}+x_{i-1,j}+x_{i,j+1}+x_{i,j-1}}{4} - x_{i,j}.

Agora parece mais claro. O laplaciano é proporcional à diferença entre o valor em um ponto e a média de seus vizinhos. Isso nos leva à ideia de concentração, se o laplaciano for muito negativo em um ponto, podemos entender que o valor do campo nesse ponto é muito maior que a média de seus vizinhos, ou seja, sua vizinhança apresenta um descrescimento alto em alguma direção que está puxando a média para baixo.

Encontramos essa ideia na física em diversas circunstâncias. Uma onda, por exemplo, é um sistema que representa “coesão” entre seus elementos, puxe uma ponta de uma corda para cima e para baixo e esse puxão irá se propagar pela corda. O que acontece nesses sistemas coesos é que cada elemento é fortemente puxado por seus vizinhos e supomos que todos os vizinhos puxam igualmente, ou seja, o elemento sobe se a média dos vizinhos estiver acima dele e desce se a média dos vizinhos estiver abaixo dele. Não somente isso, a força com que ele é puxado deve ser proporcional a essa diferença. E com força eu digo aceleração, já que nem todas as ondas são mecânicas e o conceito de força não se aplicaria tanto a elas. Em outras palavras: a aceleração do elemento será proporcional à diferença entre sua altura e a altura média de seus vizinhos. Não por menos, a equação de onda deve ser:

\displaystyle \frac{d^2X}{dt^2}+k^2\nabla^2X=0

E isso explica a equação de onda ser o que é. Todo sistema coeso deve obedecer a esse sistema, toda perturbação sua propagar-se-á de acordo com essa equação, desde que cada elemento seja puxado ou empurrado por seus vizinhos igualmente.

Folheando um livro de física-matemática, você pode se deparar com teoremas como “As soluções da equação de Laplace não possuem máximo ou mínimo locais no interior de seu domínio, apenas nas bordas.”. Pensando um pouco, isso é bem evidente. Se \nabla^2 X = 0, que é a equação de Laplace, então todo ponto deve ser a média de seus vizinhos, pois a diferença entre eles é sempre nula. Ora, nenhuma média pode ser maior ou menor que nenhuma de suas parcelas, então um ponto de uma solução da equação de Laplace não pode mesmo ser nem mínimo, nem máximo.

E, com isso, fica bem mais fácil entender algumas propriedades e algumas fórmulas que contêm esse triângulo ao quadrado. Em cálculo de várias variáveis, as melhores analogias costumam estar na mecânica dos fluidos ou no eletromagnetismo, não hesite em procurar.

Anúncios

Uma ideia sobre “O famigerado laplaciano

  1. Alessandro

    Gostei! O deLyra deu esses mesmos exemplos e discussões em Fismat 1, realmente deixou mais intuitivo a idéia do Laplaciano.

    Gostei do blog! Muito instrutivo, e o senhor escreve muito bem. Lerei mais coisas.

    Resposta

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s